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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE NO. 1594

EXPERIMENTAL INVESTIGATION OF THE EFFECTS OF CONCENTRATED
WEIGHTS ON FLUTTER CHARACTERISTICS OF A STRAIGHT
CANTILEVER WING

By Herry L. Runyan and John L. Sewall
SUMMARY

Results are pressented to show the effects on the flutter character—
istics of mounting concentrated welghts at various positions on an
untapered wing model. The model was mounted as a rigld cantilever and
was tested with concentrated weights that were 38, 60, 90, and 100 percent
of the wing weight. The moment of inertia, the chordwise position of the
welght, and the spanwise position of the weight were varied. In several
tests, an end plate was used, which was believed to change the aerodynamic
aspect ratio of the wing, The effects of these varistions on the flutter
characterlistics are presented in a form which may be conventiently used
for correlation with theoretical results.

INTRODUCTION

Airplane design trends are leading to the placement of heavy
concentrated messes on the outer wing panels and sometimes on the wing
tip. Present—day flutter analysis is based on many simplifying assump—
tions and, with the inclusion of these concentrated masses into the
problem, the analytical solution is at best approximate. Experimental
verification of these simplifying assumptions is neseded for more accurate
design criterions. The purpose of this paper is therefore to present a .
consistent series of flutter tests made on a simplified structurs in order
that the assumptions made in the various fundamental analyses may be
evaluated. '

Dynamically similar models of full-scale airplanes are sometimes used
for flutter testing, but the production of such models is exceedingly
difficult. For this reason simplified models that could be built, tested,
and analyzed more easlly are being used to study the assumptions in the
theoretical analysis. The model wing used for this series of tests was a
straight, untapered, cantilever wing having uniform properties the entire
length of the wing. Concentrated weights differing in mass and moment of
inertia were moved chordwise and spanwise on the wing. Because of the
simpliclty of construction of the model, no attempt has been made to
indicate the most favorable location for a concentrated weight from
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considerations of the flutter characteristics of an actusl wing. In »
order to obtain further information about the character of the air forces,

an unattached end plate was installed at the tip for a few tests. The

effect of the end plate was to increase the asrodynamic aspect ratio.

The flutter tests rpresented hereln were mede in the 4 5-foot flutter
tunnel on a single modsl end requived almost 100 separate runs. The model
did not change its properties throughout the progrem.

SYMBOLS
W weight of wing model, pounds
Ww woight of concentrated weight, pounds
1 length of wing model, feet
b half chord of wing model, feet
Iy mass moment of inertia. of welght about wing elastic axis,
- 1nch-pound—second )

ICG mess moment of inertlas of wing abhout center of gravity,

{nch-pound~second?
Ipp mass moment of inertia of wing about elastic axis, 1nch-—pound.—seccnd.2
EI bending rigldity of wing, pound—inches®
¢ torsional rigldity of wing, pound-inches®

density of testing medium, slugs per cubic foot
m mass of wing per unit length
2
K mess ratio <“:b )
Ty nondimensional radius of gyration relative to elastic
Iga
axis
12 mb2

e, distance between elastic axis of wing and center of gravity of

weight referred to half chord
Ty natural first bending frequency at zero airspeed, cycles per -

1 second

fh natural second bending frequency at zero alrspeed, cycles per -

2 gsecond
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ft natural first torsional frequency at zero airspeed, cycles per
second

ff flutter frequency, cycles per second

7] indicated airspeed at flutter, feet per second

v true airspeed at flutter, feet per second

oy angular naturel first torsional frequency at zerc airspeed,
radians per second (2nfy)

@p engular flutter frequency, radians per second (2::1’1-)

= nondimensional reference flutter—velocity coefficient

by,

- reduced wave length at flutter

by

oy angular naturasl first bending frequency at zero airspeed,

1 radians per second ( :cfhl

mhe angular natural second bending freguency at zero airspeed,
radians per second <2xfh2>

Subscript:

w rofers to the corresponding properties or parameters of the

concentrated welghts

APPARATUS

The Langley L4.5~foot flutter research tummel was used for this
series of tests. This tummel is unusual in that the testing msdium used
may be either air or Freon—12 or any mixture of the two at any pressure
from 30 inches of mercury to k.3 inches of mercury, absolute. Utilizing
this feature makes 1t possible to vary the mass ratio K, Mach number,
and Reynolds number (each independently) for a given wing over a large
range of values.

The model wing, built of balsa wood with a duralumin insert, had
a 48-inch length and an 8-inch chord and was mounted vertically as a
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rigld cantilever from the top of the test section as shown in figure 1.
This type of mounting resulted in symmetrical flutter or a flutter
involving no bending or torsional deflectlons of the root., A cross—
gectional view of the wing 1s glven in figure 2 and the wing properties
were as follows:

Chord, inches . . . « . .
Iength, 4inches . . . . .
Aspect ratio (geometric)
Tepor rabio + « ¢ ¢« ¢ o &«
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GJ, pomd-_immsz * L 4 L ] [ 2 * L] L . * L L . L 4 [ ] L] L] L » L L] 0( 0692 x 106
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[ ] [ . LI 4 - .
$ & e 8 o s o
e & & o e o
e s e & & a o
« a o & » &

e 8 &

%(standardair,noweight) e o s o s o s s 0 e e e e e e e s . 32.6

The bending rigidity and torsional rigidity were determined experimentelly
from the statlc deflection curves of the wing in bending and torsion,

Weights which were approximately 38, 60, 90, and 100 percent of the
wing weight (fig. 3) were used and the weight paremeters (ratio of mass
of welght to wing mass, distance of weight center of gravity from wing
center of gravity in percent of the half chord, and the ratlo of the
polar moments of inertla) are given in table I,

The variation of welght 7 from Ta to 7f (fig. 3(g)) was obtained by
moving the samo weight chordwlse on the welght support. This procedure
resulted in maintaining the weight for all tests with welght 7 essentially
constant while changing the mass moment of inertia about the wing elastic
axis and the chordwise position of the center of gravity.

A high-gpeed motion-plcture camsre that was used to record the
oscillations of the wing during flutter was situated outside the tunnel
for ease of access as shown in figure L. The camera hed a film speed of
120 frames per second. Two examples of plctures taken with this camers
are shown in figure 5. It 1s interesting to note the change in the
shape of the flutter mode between the two cases, where the one case has
a tip weight (weight 6, run 35; see table II) and the other a weight
close to the midspan (weight 5, run 31; eee table IT).

Vibration records of the bending and torsionel oscillations of the
wing during flutter were obtained electrically by the use of strain gages
mounted on the wing as shown in figure 1. The vwhite squares indicate
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bending gages and the circles indicate torsionel gages. The strain gages
feed through a system of bridges and amplifiers %o a recording oscillo-

graph.

The installation of the umattached end plate 1s shown in figure 6.
The plate was s0 adjusted that the clearance between the plate and the
wing was small In order to reduce as much as possible any air flow around
the wing tip. With this Installation, the aerodynamic aspect ratio was
believed to be increased. In order to prevent destruction of the wing
as a result of divergence, restraining wires were attached from the tunnel
walls to the wing quarter chord at the tip. These wires had sufficient
slack in them to permit adequate amplitude in flutter but still to save
the wing when dlvergence occurred.

TEST PROCEDURE

Since flutter 1s a destructive phenomenon, recognition of flutter,
recording the necessary data, and reduction of the airspeed must dbe
accomplished In a very short Interval of time to prevent demage to the
model. Increases in the airspeed during the run were made slowly angd,
at speseds close to the point of flutter, airspeed Increments of the order
of one mile per hour were necessary. When flutter occurred,the recording
oscillograph and movie camers were operated and the tunnel conditions
were observed and recorded as shown in table II. For most runs, the
netural frequencies were tebulated both before and after the actual run
to determine whether the wing had been damaged by flutter. The remarks
in table IT regarding the flutter characteristics are based almost
entirely on visual observations made at the time of the run and eince
the observer, because of the sudden and vlolent occurence of flutter,
was principally concerned with saving the model, these remarks are
inclined to be arbitrary.

RESULTS

The results of this investigatlon are presented to show the effect
on flutter parameters of spanwise and chordwise variation of concentrated
welghts over the wing (figs. 7 to 26). In all plots, the various flutter
parameters are presented as functlons of the spanwise positlion of the
soncentrated welght from root to tip, with individual curves repregenting
distinct chordwlse weight positionsg., The flutter parameters are given as
ratlos of valuss obtained with concentrated weights at a given location to
gimilar velues obtalned with the wwelghted wing.

Examination of the flutter—speed ratio (figs. 7 and 8) reveals a
general reduction followed by an increase in flutter speed for all
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chordwise welght positions as the sgpanwise positions verled from root to
tip. However, for weights located forward of the wing center of gravity
(weights 4 and 6 in fig, 7; welghts Ta, Tb, Tc in fig. 8), = divergence
reglon was found which was a function of the msss of the weight and its
chordwise location. The more forward the weight center of gravity and
‘the greater the mess, the wider the divergence region. With the excep—
tion of welght Tc, flutter occurred with each of these forward weights
located at the tip but appeered to approximate a second bending mode;
vhereas, for the inboard positions of these weights, the flutter mode
wasg closer to a first bending mode.

For welghts located rearward of the wing center of gravity (weight 5
in fig. 7 and weight 7f in fig. 8), flutter was obtained at all spanwise
positions with no change in flutter mode evident at any point. Of special
interest regerdiing these rearward weight positions is the reduction that
they caused in the flutter speed.

The dotted curve in figure 7 shows the effects of the end-—plate
instellation on the flutter-speed ratio for weight 6. With this plate
in the tumnel the flutter speed dropped 5 percent for the unweighted wing
and 15 percent for the wing with weight 6 &t the L3-percent—spen positim.
With the welght at the tip the flutter speed was reduced 6 percent but e
more interesting phenomens than this reduction was the shift in flutter .
mode resulting from the presence of the plate. Figures 9 and 10 are parts
of the oscillograph records teken during flutter. In figure 9, the
bending traces are seen to be approximately 180° out of phase, whereas
in figure 10 they are approximately in phase. An examination of the
records of the natural frequencies at zero airspeed indicated that, when
first bending was excited, the bending traces were approximately lé0° out
of phase and that, when second bending was excited, they were approximately
in phase. Thus, comparison of the records in figures 9 and 10 with the
records of the natural frequencies at zero sirapeed shows that, with the
end plate installed in the tunnel, there was a first bending mode in the
flutter record and that, without the end plate, a second bending mode
was evident 1n the flutter record. Ko epprecisble changs in the flutter
frequency occurred with or without ths addition of the end plate,

The veriations of fiutter-velocity coefficient —— with reduced

wave length = for all welght positions are shown in figures 11 to 1b,

The natural torsional— end flutter—frequency ratios for all weight
positions are given in figures 15 to 18. Of interest are the different
shapes in the flutter—frequency curves for weight 6 in figure 15 and
weight 7b in figure 18 compared with those of the other welght positions.
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Firgt and second bending-frequency ratios asre gliven for all welght
positions In figures 19 to 22, The general rise in the second bending
curves occurred in the vicinity of the second bending node of the unweighted

wing.

Curves of the ratio of first-bending frequency to torsion frequency
and second-bending frequency to torsion frequency ere given in figures 23
to 26, Of interest is the sharp difference in the shapes of the curves
for both forwerd and rearward welght positions (welghts 5 end 6 in
figures 23 and 2h; weights Te and T7f in Pigures 25 and 26)., No curves
are given to show the effect of the end plate on the natural freguency
in figures 19 to 26 because this effect was negligible.

CONCLUDING REMARKS

The results have been presented of almoat 100 flutter tests in which
concentrated weights were mounted rigldly to a straight cantilever wing.
The moment of inertle and mass of the weights were varied and the weight
position was varled chordwise and spanwise. During the entire series of
flutter tests the elastic properties of the wing dld not materially change.
The results were presented In the form of curves that show the effects of
varying concentrated welghts on the verious flutter parameters.

At the present timp there exlst several anslytlical methods of epproech
to the problem of flutter in wings with concentrated weights. The flutter
date presented pravide informetion from which the validity of these pro—
cedures may be evaluated by comperison with experimental results.

Langley Memorial Aeronautical Laboratory
National Advisory Committee for Aeronsutics
Lengley Field, Va., November 19, 1947
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TABLE I

CONCENTRATED WEIGHT CHARACTERISTICS

Weight 23 e EE;
W (a) Tga

1 0.636 0.039 |- 1.,k0
2. .625 .039 .883
3 375 -, 050 .51k
b .636 -.625 1.91
5 .636 .687 2.68
6 1.oipo -.937 7.50
Te. .917 -.818 L,26
To .931 -.578 2.86
Te .9kO -.360 2,04
7d 86 | —1h0 | 1.555
Te 954 .03k 1.56
7€ 917 500 | 2,27

aNbgative values indicate concentrated
weight locatlions forward of wing

elagtic eaxis,
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NACA TN No. 159k

Figure 1.- General view of test section and model showing strain-

gage locations.
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Figure 2.~ Cross~sectional view of model,
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(b) Weight 2.
Figure 3.~

Concentrated weights.
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(c) Weight 3.

(d) Weight 4.

Figure 3.-

Continued,
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(g) Weight 7a.

Figure 3.~ Concluded.
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Figure L.~ Plan view of Langley ),5-foot flutter-research tunnel showing
camera location relative to test section.
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(a) Run 35, (b) Run 31.

Figure 5.- Motion-picture records of one cycle of flutter for
different weight positions.

29






Figure 6.~ End-plate installation. Note restraining wires for

protecting model from destructive divergence.
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Figure 8.- Flutter.speed ratic T" against span position for weights 7a to 7r.
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Figure 9.~ Flutter record
with weight 6 at tip and

end plate in tunnel.
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with weight 6 at tip without
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Figure 13,- Flutter-veloolity-coeffiolent ratio
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Figurs 15.- Natural first torsional-frequency

ratio 'dt:,! against spean position for weights
1 to 6.
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ratio ¥ against span position for weights
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Figure 16.- Flutter-frequency ratio X

against span position for weights 1 to 6.
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Figure 23.- Natural first-bending to first-
torsional frequency ratio lsunlt span
position for weights 1 to 6.

Figure 2k.- Naturel second-bending to first-
torsionsl frequency ratio against span
position for welghts 1 to 6.
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